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Generalized Langevin equations: Anomalous diffusion and probability distributions
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We study the motion of a particle governed by a generalized Langevin equation. We show that, when no
fluctuation-dissipation relation holds, the long-time behavior of the particle may be from stationary to super-
diffusive, along with subdiffusive and diffusive. When the random force is Gaussian, we derive the exact
equations for the joint and marginal probability density functions for the position and velocity of the particle
and find their solutiond.51063-651X96)10706-9
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[. INTRODUCTION noise. However, in nonequilibrium systems the driving noise
and the dissipation may have different origin and no
This paper deals with systems that present anomalous difluctuation-dissipation relation holds. In such a cé&sg)
fusion. It has been shown that in many systems the meawill be referred to as “external noise.”
square displacement does not grow linearly as in normal dif- In this paper, we will show how the long-time behavior of

fusion but in the anomalous form given by the mean square displacement for systems described by gen-
5 eralized Langevin equatiof§&LE’s) depends on the proper-
(X)) ~t" (t—e0), ties of the correlation function and of the memory kernel. We

) , i __consider nonequilibrium systems although the equilibrium
wherev#1 [1,2]. There is current interest in understanding gt ,ation is easily recovered by imposing fluctuation-

the physical mechanism leading to anomalous diffusion angjssination relation. When both the correlation function and
it is thus found that chaotic systems can present superdiffuye gissipative kernel are long-time tail functions, a variety
sion with »>1 [3] while subdiffusion withv<1 is encoun- ¢ jimiting behaviors is obtained. The exponents of the long-
tered in constrained systems such as fradtaig|. We have  ime tails determine whether the system becomes stationary,

recently shown that the consideration of inertial effects alsq,pqiffusive. diffusive superdiffusive, or even logarithmic
results in superdiffusiop4—6]. Moreover, we have also ob- ;o (Xz(t)>~'lnt. ' ’ '

served that Gaussianfldriving noise leads to a subdiffusive  \yhen the noise is Gaussian. and due to the linearity of

behavior for the undamped free Brownian partices]. Eq. (1.1, it is also possible to derive exact expressions and
On the other hand, generalized Langevin equations havggyker-Planck equations for the joint probability density,

been us.ed recently to describe the dynamics of particles IB(x,0,t), of the displacement and the velocity and for the
percolation clusters that present anomalous diffudi®h marginal densitiep(x,t) andp(v,t).

This equation is a nonlocal equation that, in the absence of a 11,0 paper is organized as follows. In Sec. II, we set the

deterministic field, can be written in the form general analysis of the process governed by(E®). In Sec.
) ; _ Il we study the long-time behavior of the variances and
x(t)+f Bt—t)X(t")dt' =F(t), (1.2 discuss the anomalous diffusion. In Sec. IV we analyze two
0 relevant examples. In Sec. V we obtain the probability den-

" L _ sity functions of the process when the driving noise is Gauss-
whereg(t—t') is the dissipative memory kernel afdt) is  jan. Conclusions are drawn in Sec. VI and technical aspects
a random force that we assume to be zero centered and sigw in the Appendices.

tionary, i.e.,

(F(OF(t"))y=C(t—t'|)=C(n), 1.2 Il. GENERAL ANALYSIS

where C(7) is the correlation functiorj10,11. When the In_what_follows we will assume that the driving_ noise
system described by E€.1) is in the equilibrium state, then F(t) is stationary, zero centered, and has a correlation func-
the functionsB(t) and C(t) are related to each other by tion given byC(t). We write the formal solution to Eq1.1)

means of the fluctuation-dissipation theorgh]: in the form
C(t)=kgTB(1), 1.3 ¢
. . X(t)=<X(t))+J H(t—rn)F(7n)dr, (2.1
wherekg is the Boltzmann constant and is the absolute 0

temperature of the environmeftteat bath In this case the
random force is sometimes referred to as “internal noise.”
Note that, from a physical point of view, one of the effects of
the noise being internal is that the relaxation time of the

system is essentially the same as the correlation time of the (X(1))=xp+vH(1), (2.2

where
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where x,=X(0) andvo=X(0) are the initial position and These are general equations valid for either internal and ex-
the initial velocity of the particle. The relaxation function ternal noise. However, when the driving noise is internal

H(t) is the inverse form of the Laplace transform Egs. (2.8—(2.10 reduce to the following more convenient
form [12]:
o=~ 23 o
(s) s2+sB(s) 2.3 oix(t)=kBT[2foH(t )dt —Hz(t)}, (2.12)
where o2, () =k T[1- (D)1, (212
Bo= | pme s (2.4 and
0
o2, ()=kgTH(t)[1—h(1)]. (2.13
is the Laplace transform of the dissipative memory kernel.
The time derivative of Eq(2.1) yields Ill. ASYMPTOTIC BEHAVIOR AND ANOMALOUS
DIFFUSION
. . t
X(t)=(X(t))+ foh(t— 7)F(7)dT, (2.9 We will now discuss with some generality the asymptotic

behavior of the mean square displacement in terms of the

- ) ) i asymptotic expansions of the correlation functio(t) and
where(X(t))=voh(t) and the relaxation function(t) isthe o the memory kerneB(t).

derivative ofH(t), i.e.,h(t)=H(t). Hence, We will not study all possible limiting behaviors of the
correlation function. Instead we will only consider two

N 1 simple but very general models, which are described below.

h(s) (26 In both cases we will assume that the correlation function is

STA(s) a locally integrable function in (8]) for any positiveM.

In addition, from Egs.(2.2) and (2.5 it follows that def(ii)eglgltyflg]olse intensityln this case the noise intensity

H(0)=0 andh(0)=1.
We will only consider random systems whose velocity o
relaxes to a stationary state with zero average velocity. Thus, K= f
h(t) goes to zero whett—o. For systems driven by internal
noise the relaxation functioh(t) is related with the long-
time behavior of the autocorrelation function of the velocity.

This relation is proved in Appendix A and reads

C(t)dt#0, (3.1
0

is finite and nonvanishing. HenceG(7)=o(7"1) when

7—. Once we know the leading behavior @f(7) as

7—o0, the behavior of its Laplace transfor@(s) ass—0

(X(t+r)5((t)> can be obtained using Abelian theorems, which give the

h(7)=lim ~————. (2.7 small's behavior ofC(s) if one knows the asymptotic be-

toee (X(D)X(1)) havior of C(7) as 7—o [14]. In the case of a finite noise
intensity one can easily see tHab]
From Egs.(2.1) and (2.5 and the symmetry property of .
the correlation function, i.eG(t—t')=C(t' —t), we obtain C(s)~K+o(1) (s—0), 3.2

the explicit expression of the variances of procgis$) o
whereK is given by Eq.(3.D.

2 4y _ 2 (b) Long-time tail noiseNow the correlation function de-
t)=([X(t X(t
T D=AXO=(XO) cays as a power law of the form

t ty
0 0 C(ﬂr)~? (17— ), (3.3

oo, () =([X(t) —(X(1))]*) where 0<a<1. The Laplace transform of the correlation
¢ 4 function behaves gd5]

0 0 - Al'(1—-a)
C(s)~ v (s—0). (34)
and

As we have mentioned in Sec. Il we will only consider
dissipative kernelg(t) that lead to stationary states for the
velocity process. Moreover, we restrict ourselves to those
kernels B(t) leading to relaxation functiond(t), that fi-

t t . . .
= | H(t)dt f h(t)C(t:—t-)dts . 21 nally become monotonic, that is, there exists soige 0
fo (tdt, 0 () C(t—t)dt; (210 such thatdh(t)/dt has definite sign for alt=t,. Again,

. . 1.
T (D =X — (XOYIX(H) = (X(1) )= E‘T)z(x(t)
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B(t) is supposed to be locally integrable. Equati@ré) sug- the variances of procesd.1l). We can easily see that the

gests considering the following cases: variance of the velocity becomes a constant for all cases
(a) Finite relaxation time That is, the inverse of the re- discussed above. Moreover, the average velocity converge to
laxation time zero becaush(t) goes to zero as—. Hence, the velocity

process reaches a stationary state with zero average value.

When the driving noise is internal then the stationary state is

the equilibrium state. In this case the variance of the velocity

can be obtained in a more straightforward way. This is the

is finite and positive. In this cagsee Eq(3.2)] case, for instance, of a free Brownian particle of unit mass in
a medium at temperatufe where

fw,B(t)dtZE<oo (3.9
0

B(s)~E+o(1) (s—0). (3.6
lim a2, (t)=kgT. (3.13
(b) Slow relaxation We now assume that the friction ker- t—o
nel decays as
The behavior of the mean square displacemeﬁ;(t),
B shows a much richer diversity. The normal diffusion behav-
B(7)~ =3 (1), (37 jor arises when both the intensity of the nolée Eq. (3.1),

and the inverse relaxation timg, Eq. (3.5), are finite. In
where 0< y<<1. Therefore, its Laplace transform behaves asuch a case one obtains from E}.8) that
[see Eq(3.9)]

2K
A BI'(1—v) aix(t)~E7t (t—00). (3.19
B(S)Nv (s—0). (3.9
R Let us now derive this expression. We first note that Eq.
The behavior ofh(s) is readily obtained from Eq2.6) (2.8 can be written as
and from the expansions ¢f(s) whens—0 [cf. Egs.(3.6) N Z
and(3.8)]. We now want to know the long-time behavior of o2 (t)Zthf H(tz)dzj H(tz')C(tz—tz')dZ'.
h(t) andH(t). This is accomplished by the use of Tauberian > 0 0
theorems, which can be considered converse Abelian theo- (3.15
rems and they consist of a collection of results that roughly .
give the asymptotic behavior of a functidift) ast—c if From Eq.(3.10, we see that, for friction kernels of tygea),
one knows the smals behavior of its Laplace transform H(t) converges to B whent—cc. Therefore,
[14]. For the two kinds of memory friction introduced above 212 1 ,
we have[16] the following: o2 ()~ _zf dzf C(tz—tz')dz . (3.16
(a) Finite relaxation time In this case, E=Jo 0

N 1 R 1 Reversing the order of integration we get
h(s)~=, H(s)~= (s—0) 3.9
E Es 5 2t [t X
and oxx(t)~§ 0C(x) 1—? dx. (3.17
. 1 Whent—oo we finally have
h(t)=o(t™ "), H(t)~ E (t—o0). (3.10
2t (>
2 ~ —
(b) Slow relaxation Now we have 7ex(V) Ezfo Cogax, (3.18
A st ~ s and for driving noises with finite intensit{ we obtain Eq.
"~ Bra—y "97ErI—y 70 (3.14.
(3.11) When the correlation function presents a long-time tail
q andE is finite, theX(t) process is superdiffusive because
an
i 2t A 27 (t 31
j— ~—_—— — 00
h(t)N_ (l Y)BSIH(’YW) t7_2, O-XX( ) EZ(l_a)(z_a) ( ) ( . 9)
a
and 0<a<1. The derivation of this expression is outlined in
sin(ym) Appendix C. The existence of the tail indicates that the ran-
H(t)~ 4 (t—o0). (3.12 ; ; P ;

B dom force varies slowly and persists driving the system in

the same direction. As a consequence, the system becomes
In Appendix B we verify these relations for a particular ex- superdiffusive.
ample. Nevertheless, when the relaxation is also s[ae., 8 of
The substitution of expansiori8.10 and(3.12 into Egs.  type (b)] then the number of possible limiting behaviors in-
(2.8) and(2.9) allows us to obtain the long-time behavior of creases notably. Thus when the driving noise has a finite
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intensityK then the long-time behavior of(t) depends solely on the exponenbf the relaxation tail. The possible limiting
behaviors of the variance, as a functignare(cf. Appendix Q

( const, O<y<1/2 (stationary
2K sir?
22—(27/7r) ) y=1/2 (logarithmig
Ksin(ymr B -
mt” 1 1/2<y<1 (subdiffusion

\

(t—00). It is remarkable that fory=1/2 the mean square displacement grows as slowly as the logarithmic behavior.

When both the correlation function and the memory kernel show long-time tails the process may become asymptotically
stationary to superdiffusive, including subdiffusive, diffusive, and logarithmic. The fact that no fluctuation-dissipation relation
holds means that the exponentsand y are independent. Thus the long-time behavior of the variatjcé) will depend on
both exponents. Following a similar reasoning we heseae Appendix €

( const, y<a (stationary
2Asi ra-2
Sérzl(yrz)(l(_ ) V) Int, 2v=a (logarithmio
ORI (320

2Asin(ym)I'(1— a)
B2al(1—y)(1—a+y)(2y—a)

t2r-« 2y¢>qa (anomalous diffusion

\

(t—=). In the third case where2>a we distinguish three  X(t) is always subdiffusive with

different regimesli) subdiffusion, if 2y— a<1; (ii) normal ”

diffusion, if 2y—a=1; and (ii) superdiffusion, if o2 (1)~ 2keTsinym) (3.22
2y—a>1. We show in Fig. 1 the long-time behavior of the > Aym ' '

mean square displacement as a function of the exponrents ) ) ] )
and y. This result can also be obtained in a different i@l We

We note that for internal noise, the fluctuation-dissipationfirst Observe that the properties of the mean square displace-
relation implies that the tail exponents 6{t) and3(t) are ~ Ment are determined by the velocity process. In effect, the
equal, that is@=v. In this case, the long-time behavior of Varance of the displacement can be written in the form

t t’
10 aix(t)zzf dt’f C,(t',t")dt", (3.23
// 0 0
7/
7/ . .
e where C,(t',t")=(X(t)X(t")) is the velocity autocorrela-
0.8 1 / . . . .
’ N L tion function. Whent— oo, the velocity becomes a stationary
g e random process an@,(t’,t”) will be a function oft’ —t".
5 : e Hence from Eq(3.23 we get
064 & ) e
. t
3 /g& aix(t)~2f C(n(t—ndr (t—w»). (3.24
. . o 0
0.4 1 s o,§ gs
// § For the case of internal noise we have shown in Appendix A
4 5? thatC,(7) =kgTh(t), [cf. Eq.(1.5]. Therefore,
0.2 7 )
s t
[ oix(t)~2kBTfoh(T)(t—T)dr (t—»). (3.25
/
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 We define
Y
t
FIG. 1. Asymptotic behavior of2(t) as a function of expo- |1(t)52kBth0h(T)dTv (3.2

nentsa andy for C(7)~7 “andB(7)~7 Y whenr—x. Loga-

rithmic behavior arises fory=2«a and the diffusive one for ‘

v=2a—1. The discontinuous line corresponds to the internal noise lo(t)=— 2kBTf h(7)7dr. (3.27)
case(see text 0
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Taking into account Eq(3.12 we see that the long-time regimes in the behavior of these systems. Unfortunately, we

behavior ofl 5(t) is have not been able to solve exactly any case with a long-time
tail. In a previous study, Muralidhaat al. reduced the veloc-
(1— y)sin( ym) ity correlation function for a power law tail kernel up to
I5(t)~2kgT t” (t—x). (3.28 qguadraturg 18]. This particular case refers to internal noise

Bym and the quadrature has to be approximated in order to obtain

. . . _ the standard anomalous diffusive behavior.
The asymptotic behavior df(t) is obtained as follows. We ~ we now assume that the stationary driving ndig) is
first write 1,(t) in the form exponentially correlated,

Il(t)=2kBTt[ f:h(T)dT— ftwh( 7)dr

D ’
. (3.29 C(t—t')= 2—e*IH e, (4.2)

Tc

The asymptotic expression of the first integral on the rightwhereD is the noise intensity and, is the correlation time.
hand side of this equation is obtained by taking the limitThis is a relevant example of driving noise with finite inten-

whens—0 of ﬁ(s) [17]. From Eq.(3.11), we see that sity.
f h(t)dt= Iimﬁ(s)=0. (3.30 A. Internal noise
0 s—0 Let us first assume th&t(t) is internal noise. In this case

the frictional kernel is given by3(t) =C(t)/kgT (note that
this example represents a Brownian pardiclehe function
H(t) is given by[cf. Eq. (2.3)]

Using Eq.(3.12 we see that as— the second integral in
Eqg. (3.29 behaves as

° sin(yr
f h(r)dr~— I’;y )ty_l (t—o0). (3.32 2kgT

t . H(t)=—5 [1-Ae "Zesin\t+ )], (4.2

Hence,
sin( var where
02 ()~ 1,0+ 1o(0)~ 2k T ™ 7 (1),
Byw D 1 2\T
(3.32 A=\/50—=———> a=arcta —————
2kgT7, 472 1-D7./kgT)’
Taking into account that the quantitiéssand B are related 4.3
by A=kgTB we finally obtain Eq(3.22.
In the next section we work out exactly two cases whereand
the long-time behavior becomes diffusive. 1 Dr\2
A=>\+—2<1——°> . (4.4
IV. EXAMPLES Ante\ T kT

We discuss in this section two examples that can béhe substitution of Eq(4.2) into Eqgs.(2.11)—(2.13 results,
solved analytically. The expression for the mean square disafter some algebra, in the following explicit expressions for
placement at all times makes it possible to identify differentthe variances of the particle

kgT)3 1 2\
o2, (1)=kgT— (—[B)z)—Aze‘“Tc[m\% ;2—4)\2)sir12()\t+a)—T—sinZ()\H—a) , (4.5
Cc Cc
) 4(kgT)?  4(kgT)® . 4(kgT)® .
o) = 5 t— 2 [14 A(sina+ 2\ 7.cosx) ]+ 2 Ae Y2 3sin\t+ a) + 2\ 7,cOg At + a)
—Ae "TesiP(\t+a)], (4.6

and

2(kgT)? keT

B A2 tIToed _ B
5|1+ DTCAe esiP(At+a)—A

KeT| o 20 kgT
1+ —|e Y?Tesin(\t+a) +
Dt

ol (t)= Ae Y27ccog Nt + )

ANkgT
— 28 A% UTesin2(\t+ a)

. 4.7
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We see that wheh— oo, and
02, ()~KgT, o%()~[4(kgT)?/D]t. (4.8 A(kgT)?
o2 (1)~ t, o, (t)~kgT (t>7). (4.10
This result is in agreement with Eq.13 and (3.14 be- D

cause nowK=D/2 andE=D/2kgT.
Since, in this case, we know exactly the time evolution of _Let v, and v, be exponents defined by%,(t) ~t* and
the variances for all times, we can identify several regimeso?, (t)~t". We may then summarize the above results with
We first distinguish three different time scales involved inthe following transitions between exponef#st increases
the motion of the Brownian particle. Namely, the observa-
tion timet, the relaxation timer, (the inverse oE), and the vy=4—v,=1, v,=2—v,=0. (4.11
correlation time of the input noidavhich is related with the
correlation functionC(t)]. Note that for internal driving
noise the correlation time and the relaxation time are essen-
tially of the same order of magnitudef. Eq. (1.3)], that is, Suppose now that the driving noise is external. In this
.~ 1.=7. Hence, the behavior of the variances will dependcaseC(t) andS(t) are not related. Let us further assume that
on whethett andr are similar or not comparable. In this case the relaxation is Markovian, that igg(t)=g4(t). In this
we have only two extreme situatiofig t<<7, and(ii) t>r. case,
Case(i) obviously corresponds to—0 while case(ii) is
equivalent tat—o. From Eqs.(4.5 and(4.6), we see that

B. Markovian relaxation

h(t)=e A, H(t)=(1—e A)/B. 4.12

o2 ()~ (DIBrItY, o ()~ (DRT)H? (t<7). The substitution of Eq(4.12 and Eq.(4.1) into Egs.(2.9)-
(4.9 (2.10 yields

D 1 287 1
2 - C —(BHlr)t_ = 2Bt
o,,(1) 25 l+:37'c+ 1_[327_§e c 1—,87-08 }, (4.13
2 2 _ 2 2
B 1-p7. 1-p°7; B(1-pB7c) 2B(1—-B7) 2B(1+B7c)
(4.149
and
D|1 T T 2— BT 1
2 _ = c —tlre__ c -B+lUrt_ = F°¢ —pt, T  -2pt
gy, ()= + e e e c e P+ e . 4.1
w() ZE‘B 1B, 1B, BA-Br0® BA-Br) ] 413

Let us analyze the asymptotic properties of the variances. (1) 7.<7,. In this case we distinguish the time regime
We first observe that in this case there are three differentvhere the observation time is much longer than the correla-
time scales: the correlation time;, the relaxation time tion time but still smaller than the relaxation time:
.= B~1, and the observation tinte We will now show that 7.<t<r,. In this regimeF(t) acts as white noise, with
the behavior of the variances depends on whether these thré€t) =D §(t), and from Eqs(2.9)—(4.12 we get(recall that
time scales are similar or not comparable. Femaller than  Bt<1)
any other time scale, it follows from Eq&.13 and (4.14)
that 1

5 5 o2 (1)~ §Dt3, o?,(t)~Dt. (4.18
o2 (t)~ gt“, o2, ()~ th (t—0). (4.1
¢ ¢ Therefore, wherr.<8~ 1, we have the following transition
On the other hand, if is larger than any time scale, then  (ast increases

D D
Uix(t)"“ﬁzt, Ugv(t)"“m (t—ﬂx’). Vx:4—>VX:3—>Vx:1, VU:2—>VU=1—>1/U=0.

417 4.19

Let us now investigate the intermediate-time behavior of the (2) 7.>7,. In this case we distinguish the time regime
variances between these two extreme situations. We first agthere the observation time is much longer than the relax-
sume thatr, and 7, are not comparable. In this situation we ation time but smaller than the correlation time<t<<r..
have two different cases. In this regime the inertial term may be neglected and the
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dynamical equation can be approximated )'bye,B’*lF(t).
As a consequence the variances are given(regall that
t/7,<1)

o2 ()~ ol (1)~ (4.20

D , D
257" 2577
and the transitions between exponents are given by

v=4—v,= (4.22

2—v,=1, v,=2—v,=0,

where nowr.> g1
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(1) =kgT[h(t) =1+ EH)]. (5.9

Let us now obtain the marginal probability density func-
tions of the velocityp(v,t) and the displacemer(x,t).
Setting=0 in Eq. (5.1) and following the method of the
characteristic function, we can see tipdb,t) obeys the fol-
lowing Fokker-Planck equation:

*p(v,t)

Plo.Y =—§(t)—vp(v )+ 1D (t)—,

ot

(5.9

We also observe that when the time scales are similakypere

7.~ 7, (as is the case of internal driving nojseve are only
able to distinguish two extreme asymptotic regimes:0
andt—o. This results in the transition given by E@.11).

V. PROBABILITY DENSITY FUNCTIONS

We now assume that the input noise is Gaussian. Due to
linearity of Eq.(1.1), we see that the joint probability density

function p(x,v,t) for a displacemenk and a velocityv at

D,(t)=e(). (5.10

The marginal density of the displacemep(ix,t) obeys
the Fokker-Planck equation

time t must be Gaussian. As a consequence, the joint char-

acteristic function of the process can be written as
~ ; AN 1 2 2
P(,p, ) =exp i{X(1) p+i{(X(1)p— 5[Tu(Hu
(5.2

+20%,(Opp+ol,(Dp]]

Using the method of the characteristic functi@ or the

method of functional derivativg6], one can easily see that

the joint probability density functiop(x,v,t) obeys the fol-
lowing Fokker-Planck equation:

p(x v,t)= §(t)—vp(x v,t)

ﬁt

62
+<P(t)mp(xiv,t)

7
(1) o ——p(xv.t), (5.2
where
£(t)=—h(t)/h(1), (5.3
e(1)=E(t) +02,(1)/2, (5.4
and
Y(t)=— 03, (1) +&(1) §U<t>+ir§,,(t>. (5.5

r?p(x t) ﬁp( F*p(x,t)
(5.1
whereD,(t) is the time derivative of the variance, i.e.,
D, (1) =02 (1) =202, (1). (5.12

VI. CONCLUSIONS

We have analyzed the long-time behavior of processes
obeying a generalized Langevin equation. When the driving
noise is external several behaviors arise depending on the
memory kernel and the correlation function. The common
diffusive behavior appears when both the relaxation time and
the correlation are finite and nonvanishing.

In the presence of long time tails, either in the memory
kernel or in the correlation function, the system diffuses
anomalously. The exact nature of the leading behavior de-
pends on the exponents of the long-time tails of both the
friction kernel and the correlation function. Thus, the pos-
sible behaviors include stationary state, logarithmic growth,
subdiffusion, normal diffusion, and superdiffusion. Figure 1
summarizes the limiting states as a function of the exponents
of the long-time tails. However, we have shown that when
the driving noise is internal the final state is always subdif-
fusive.

At this point we mention that the problem of anomalous
diffusion has been studied mainly for particles moving on
fractals and other disordered media. In this context subdiffu-
sion appears due to trapping sites where particles disappear,
or to excursions of the particles along blobs or dead ends.
Most of the results in this area are known by a combination
of scaling arguments and simulation resqilts?]. However,
superdiffusion seems to be more difficult to explain although

reduce tq(12]
£(t)=—h(t)/h(v),
@(t)=kgTE&(1),

(5.9

(5.7

and

for some systemgl9]. A superdiffusive behavior with expo-
nentv,=3 has been proved nonetheless for free inertial par-
ticles driven by Gaussian white noi§é]. In any case it is
quite difficult to obtain general anomalous diffusion behav-
iors with exponents/,>1. On the other hand, subdiffusion
appears for particles moving on a percolation cluster for
which the dynamics can be described by a generalized
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Langevin equation with a slow relaxation kerri8,18]. In <X(t+ T)X(t))

such a case the noise is internal and we have proved that the h(r)=Ilm———— (AB)
behavior of the system is subdiffusive. Therefore, our main o (X(DX(1))

objective in this paper has been to extend this last result to

external driving n(_)ise wher.e thg system not only shov_vs sub- APPENDIX B: RELAXATION EUNCTIONS
diffusion but all kinds of diffusive behaviofe.g., logarith- FOR A LONG-TIME TAIL KERNEL

mic, subdiffusion, normal diffusion, and superdiffusion

Finally, when the noise is Gaussian, the expressions for As an example, the asymptotic expansions of functions
the joint and marginal probability densities can be derivedh(t) andH(t), Eqg.(3.12, can be checked for the following
These densities satisfy the Fokker-Planck equation with timeelaxation kernel:
dependent coefficients. The time dependence is the signature
of the non-Markovian character of the process. As an ex- B(t)=1//=t. (B1)
ample, we have exactly solved two cases and study the be-
havior of the mean square displacement at all times. Wheﬁxh
the time scales of the process are completely separated, there
is a new transition from the ballistic behavior to the final

e Laplace transform of this reads

diffusive behavior. This intermediate state is characterized B=1Ns (B2)

by an exponeni, that takes the value 2 or 3 depending on

the fundamental time scales and 7. and from Eqgs(2.3) and(2.6) we have
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+ 7)o e mgdr, (B4)

We assume that the veIociﬁy(t) relaxes to a stationary
state. The correlation function of this process will be and

C,(7)= lim(X(t+1)X(1)). (A1)

t—o

4 1 (= . r?
h(t)= =cog \/3t/2)e 2— —j e "—=dr, (B5
3 7)o 1+r
From Eq.(2.5 and by taking into account the correlation

function C(r) of the driving noise, we write which agrees with previous result§8]. The long-time be-

" - havior can be obtained from these expressions. In effect,
CU(T)ZJ h(t/)dt’f h(t")C(r—t’+t")dt". (A2) whent— o, the first term of the expression fbt) decays
0 0 exponentially while the maximum contribution of the second

. term comes fronr around zero. Therefore,
The Fourier transform o€, (7) reads

- - A 1 (= 1
Cu(w)=|h(lw)|2C(w), (A3) h(t)N__J e "rldr=— 32 (B6)
A mJo 2\
whereh(iw) is the Laplace transform di(t) evaluated at
s=iw. When the driving noise is internaf;(7) =kgTB(7) ast—o. Likewise, it can be demonstrated from E@4)

and that
C(w)=2kgTRe B(iw)], (A4) 1
A H(t)~ —=t" 2 (B7)
where Ref) is the real part oz and B(s) is the Laplace N
transform of 3(t). Substituting Eq(2.6) into Eq. (A4) and
using the symmetry property @(7) yield We can now test that the latter results are in agreement with
the general expansion E.12). The kernel of this example
C,(1)=KkgTh(t). (A5) s of type(b) (see Sec. INwith y=1/2 andB=1/\/7. Then,

. Eqg. (3.12 for these values results in expansidi&6) and
On the other hand, we know thék?(t))—kgT ast—«.  (B7).
Whence
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APPENDIX C: ASYMPTOTIC BEHAVIOR
OF THE VARIANCE

We start from Eq(2.8) and write

0=2 [ Ayt 1)
where
p(t)=JOtH(t’)C(t—t’)dt’. (C2
The Laplace transform of this equation reads
p(s)=H(s)C(s). (3

The long-time behavior op(t) can be obtained from its

JOSEP M. PORRAKE-GANG WANG, AND JAUME MASOLIVER

S_'Y

[S(S)"“Km.

(C7)

Let us obtain the long-time behavior p{t). From our as-
sumptions we know thah(t), and consequentlid(t), be-
comes monotonic whet=t, (for somety;=0). As a conse-
quenceH(t) possesses an asymptotic expangast goes to
infinity) that allows us to apply a convenient Tauberian theo-
rem to the expression fgr(s) given by Eq.(C7). Therefore,
the long-time behavior of(t) reads[16]

Sln(w)ty_1
Bm '

p(t)~K t—so0. (C8)

Once this expansion is substituted into E8.1) along with
the asymptotic expansion 6f(t) [cf. Eq.(3.12] the leading
behavior ofaix(t) is given by the integral

Laplace transform because it is the convolution of two func-

tions, H(t) andC(t), both having an asymptotic expansion

[16].

Let us now prove Eq(3.19. Assume thap(t) is of type
(@ (E is finite) and thatC(7) shows a long tailcf. Eq.
(3.3)]. Then,

5(8) = Fi(s)C(s) ~ — @) 0). (C4
p(S)=H(S)C(S)~ g~ o  (520). (C4
Using a Tauberian theorem 6] we have
Al(1-a) | c

P(t)Nmt (t—c0). (CYH

After substituting this equation into E¢C1), we get
2t A 27 (t c6

~ [o¢]

o-xx( ) E2(1_a)(2_a) ( i )1 ( )

which agrees with Eq(3.19.
When the friction kernel is of typé€b), there are more

possibilities. Let us discuss the case of a driving noise of

finite intensity,K, and a power law kernel of exponen{cf.
Eqg. (3.7)]. The Laplace transform of functiop(t) behaves
for smalls as

2 oy 2Ksir?(ym) [t

2y—2
XX BZ,n_Z ey dt,'

(C9

where the lower limit of integration is irrelevant. The reason
for different limiting behaviors of the mean square displace-
ment now becomes clear. In effect, the integral above grows
ast—oo in three different ways. Thus, if 2—2<—1, the
integral converges to a finite value. In this caséx(t)
reaches a constant value and the proc§d$ becomes sta-
tionary. On the other hand, wheny2 2> —1, the integral
diverges ag?”"!, and

2K sir(yr)

2 ey 2y-1
Tl 1) B°m(2y—1)

(t—o). (C10
An intermediate case arises whery22=—1, that is if
y=1/2. Now, the integrant in EqC9) decays ag ! for

larget and the integral diverges as a logarithm. Hence

2K sir?(yr)

0'>2<x(t) -~ B2

Int  (t—o0).

(C11)

The derivation when both the friction kernel and the corre-
lation function present a long-time tail is obtained in a simi-
lar way.
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